Accurate approximated solution to the differential inclusion based on the ordinary differential equation.
Bài báo thuộc danh mục ISI (Q2) do TS. Nguyễn Thị Hiên- giảng viên Toán cơ bản- khoa Khoa học cơ bản- Trường Đại học Công nghiệp Hà Nội đăng trên tạp chí Ukrains’kyi Matematychnyi Zhurnal – trang 117 đến trang 127, Tập 73, số 1 năm 2021, xuất bản ngày 22 tháng 01 năm 2021.
Abstract: Many problems in applied mathematics can be transformed and described by the differential inclusion x˙∈f(t,x)−NQx involving NQx, which is a normal cone to a closed convex set Q∈Rn at x∈Q. The Cauchy problem of this inclusion is studied in the paper. Since the change of x leads to the change of NQx, solving the inclusion becomes extremely complicated. In this paper, we consider an ordinary differential equation containing a control parameter K. When K is large enough, the studied equation gives a solution approximating to a solution of the inclusion above. The theorem about the approximation of these solutions with arbitrary small error (this error can be controlled by increasing K) is proved in this paper.
Keywords: Differential inclusion, differential equation, normal cone, projection
Toàn văn bài báo tải về tại đây: https://doi.org/10.37863/umzh.v73i1.889
Thứ Hai, 12:09 22/02/2021
Copyright © 2018 Hanoi University of Industry.